
DATABASE MANAGERS

(Data for this tutorial at www.peteraldhous.com/Data)

We’ve seen how spreadsheets can filter data and calculate subtotals.
Database managers can handle larger datasets, and with practice are more
flexible and nimble for filtering, grouping and aggregating data.

They also allow you to join multiple data tables into one, or match records
across different datasets, if they have common fields – which can be a
powerful tool. Again, we’ll work with data used in reporting this story, about
the drug company Pfizer's payments to doctors.

We will work with SQLite, database software that can be managed using a
free add-on to the Firefox browser.

(Firefox uses SQLite to store information including your bookmarks; using
the SQLite Manager add-on, you can manage any SQLite database.)

First, download and install SQLite Manager. In Firefox, select Tools>Add-
ons and type SQLite Manager in the search box at top right. You should
now see the add-on under the Available Add-ons tab:

Click Install and restart Firefox.

http://www.peteraldhous.com/Data
https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/
http://www.mozilla.org/en-US/firefox/new/
http://www.sqlite.org/
http://www.newscientist.com/article/dn18806-revealed-pfizers-payments-to-censured-doctors.html

Open SQLite Manager by selecting Tools>SQLite Manager in Firefox. You
should see a screen like this:

Now open the database pfizer.sqlite, available online here, by selecting
Database>Connect Database. Navigate to the database file, and click
Open.

http://fda_warning.csv/

After the database opens, select the table pfizer in the panel to the left, and
click the Browse and Search tab in the right-hand panel. You should now be
able to see the first few rows of the data in the table:

Notice that it looks much like a spreadsheet, except there is no co-ordinate
system. Instead, the column names, called “fields” in a database, are fixed,
and each row or “record” has a unique ID number, created by SQLite as a
“Primary Key” when the data was imported. (We’ll do this with a new table
in a few minutes.)

Notice also that the field names are simplified and have no spaces. This will
keep things succinct when we write database queries. SQLite Manager also
color-codes the fields by the type of data they contain: here numbers have a
light green background and text fields are light blue.

Database queries

1. Filtering and sorting data

To extract information from our database, we need to ask for it in the
language that databases understand: Structured Query Language, or SQL.
Don't panic: the logic of SQL is very easy to follow – it's the closest that
computer code comes to plain English.

Learning SQL is very useful, because (with small variations in syntax), all
databases use the same language. So in this tutorial, you won't just be
learning how to use SQLite, but also starting to acquire skills that can be
transferred to other database software, including Microsoft Access,
PostgreSQL and MySQL.

Click on the Execute SQL tab and notice that Enter SQL box contains the
statement SELECT * FROM tablename. Replace tablename with pfizer,
and click Run SQL. That should return the entire table, because * is a
wildcard that tells SQLite to return information from every field in a table.
The query will return all 10,087 records, because we haven't asked for the
data to be filtered in any way.

OK, now let's run a more useful query, filtering the data to repeat our
spreadsheet task of making a list of all doctors in California who were paid
$10,000 or more by Pfizer to run expert-led forums. Paste or type this query
into the Enter SQL box:

SELECT first_plus, last_name, city, state, category, total
FROM pfizer
WHERE state = 'CA' AND category Like 'Expert%' AND total >=
10000
ORDER BY total DESC;

http://www.mysql.com/
http://www.postgresql.org/
http://office.microsoft.com/en-us/access/
http://en.wikipedia.org/wiki/SQL

Click Run SQL and you should see the following results:

Let's break this query down:

SELECT first_plus, last_name, city, state, category, total
FROM pfizer
WHERE state = 'CA' AND category Like 'Expert%' AND total >=
10000
ORDER BY total DESC;

The first two lines tell SQLite to select the named fields from the pfizer
table, with each field separated by a comma.

SELECT first_plus, last_name, city, state, category, total
FROM pfizer
WHERE state = 'CA' AND category Like 'Expert%' AND total >=
10000
ORDER BY total DESC;

The WHERE clause applies a filter to select only certain records from the
table.

When filtering text fields, the search string should be put in quote marks.
The second text field filter uses the operator LIKE to perform a fuzzy
match, and is used with wildcard characters: the % wildcard takes the place
of any number of characters, while the _ wildcard is used to represent single
characters only. Here the % wildcard is simply saving us from having to
type Expert-Led Forums in full, but such queries can be very useful to
return data entered in slightly different ways. (LIKE also matches
irrespective of case, whereas = requires the case to be exactly as typed.)

Our query also includes a number filter, here telling SQLite to return records
only when the total is greater or equal to 10,000. Try experimenting with
different operators, such as =, < (less than), and <> (not equal to).

In this query, each part of the WHERE statement is linked by AND, which
ensures that records will only be returned if all the stated criteria are met.
WHERE statements obey the same Boolean logic we used to filter in the
spreadsheet tutorial; again, see what happens if you replace the first AND
with OR.

SELECT first_plus, last_name, city, state, category, total
FROM pfizer
WHERE state = 'CA' AND category Like 'Expert%' AND total >=
10000
ORDER BY total DESC;

The final line of the query sorts the results in descending order by the total
paid. See what happens if you remove DESC. The semi-colon simply marks
the end of the query. See what happens if you change the end of the query to
the following:

ORDER BY total DESC
LIMIT 20;

http://www.ithacalibrary.com/sp/subjects/boolean

Now let's run the following query, which extends the search for doctors paid
$10,000 or more for running Expert-led forums to New York, as well as
California:

SELECT first_plus, last_name, city, state, category, total
FROM pfizer
WHERE (state = 'CA' OR state = 'NY') AND category Like 'Expert%'
AND total >= 10000
ORDER BY total DESC;

Now remove the brackets surrounding the first part of the WHERE clause
and see if you can work out what's going on. Hint: think algebra!

By now you should be starting to get the hang of SQL, so see if you can
write queries to return the same fields from the pfizer table, applying these
filters:

1. Find the 10 highest paid doctors in California or New York, based on
payments for professional advice.

2. Find the doctor from any state who was paid the most for meals.

2. Saving and exporting queries

OK, let's return to our query about doctors in California paid $10,000 or
more for running Expert-led forums, and save it for later use. Select
View>Create View from the top menu, give the view a suitable name, and
paste the SQL for the query into the box:

Click OK, and at the next dialog box click Yes. Double click on Views in
the left panel and select the newly created view. The results of the query
appear in the Browse & Search tab.

Now click on the Structure tab, which should look like this:

By creating views, you can keep a record of the queries you have run, which
is good practice in data journalism.

You may also want to export the results of your queries, so now click
Export, and fill in the options in the wizard as follows:

I'd recommend using the Pipe symbol (|) to separate the fields in the
exported data, as it is unlikely to appear in the data itself. Click OK, and you
will save the data in CSV format, a simple text file that can easily be
imported into spreadsheets and other data analysis software.

3. Grouping and aggregating data

Now let's repeat our spreadsheet exercise of subtotaling all of the payments
grouped by state. Select the pfizer table, click on the Execute SQL tab, and
run the following query:

SELECT state, SUM(total) AS state_total
FROM pfizer
GROUP BY state
ORDER BY state_total DESC;

Click Run SQL and you should see the following results:

Again, let's break this query down:

SELECT state, SUM(total) AS state_total
FROM pfizer
GROUP BY state
ORDER BY state_total DESC;

The first two lines return data for state and total, with the totals added up
using the function SUM and the field renamed AS state_total. See what
happens if you replace SUM with AVG, MAX, MIN or COUNT.

SELECT state, SUM(total) AS state_total
FROM pfizer
GROUP BY state
ORDER BY state_total DESC;

The third line is crucial, telling SQL how to group the data to calculate the
subtotals. In GROUP BY queries like this, fields that are selected but aren't
being aggregated (using SUM, AVG etc) must also appear in the GROUP
BY clause.

Now let's total by state just for payments made for Expert-led forums, using
this query:

SELECT state, SUM(total) AS expert_total
FROM pfizer
GROUP BY state, category
HAVING category LIKE 'Expert%'
ORDER BY expert_total DESC;

Click Run SQL and you should see the following results:

This query introduces the HAVING clause:

SELECT state, SUM(total) AS expert_total
FROM pfizer
GROUP BY state, category
HAVING category LIKE 'Expert%'
ORDER BY expert_total DESC;

HAVING does the same filtering job as WHERE for a GROUP BY query;
fields that appear in the HAVING clause must also appear under GROUP
BY.

We can also aggregate data by more than one field at a time. For example,
this query performs the same aggregation as in the pivot table example from
the spreadsheet tutorial, although it does not return a pivot table view:

SELECT state, category, SUM(total) AS subtotal
FROM Pfizer
GROUP BY state, category;

Using multiple data tables

1. Creating a new data table

We're going to import the data in the file fda_warning.csv, available online
here, which details warning letters sent by the Food and Drug
Administration to doctors because of problems with their conduct of clinical
research. The data is in a CSV file with Pipe separators. The first few rows
look like this when imported into a spreadsheet:

http://www.peteraldhous.com/Data/fda_warning.csv

First we need to create a table into which to import the data. Select
Table>Create Table, and fill in the dialog box as follows:

The first field will be automatically created when the data is imported,
giving a unique ID number to each record. For this field, make sure to select
INTEGER for Data Type, and to check the Primary Key and Autoinc
boxes. The other column names match those in the data; VARCHAR means
a text field of varying length; DATETIME is used for the issued date.

Click Yes at the next dialog box, which shows the SQL code being used to
create the table:

Now we can import the data, by clicking the Import icon:

Fill in the Import Wizard as follows, and select OK at the subsequent
prompts:

With the new fda table selected in the left panel, select the Browse &
Search tab to view the imported data:

Notice that empty values, called NULLS, are color-coded in pink. The date
values are colored the same as text, and when used in queries should be put
in quote marks, as for text.

For instance, this query returns all records from the fda table with issue
dates from 2005 onwards:

SELECT *
FROM fda
WHERE issued >= '2005-01-01'
ORDER BY issued;

2. Querying across joined data tables

Now we’re going to create a query across the two data tables, so we select
doctors paid by Pfizer to run Expert-led forums who had also received a
warning letter from the FDA for problems with their conduct of clinical
research.

To find doctors who may be the same individual, we need to match them by
both first and last name. Here is how to achieve that using SQL:

SELECT *
FROM fda JOIN pfizer ON fda.name_last = pfizer.last_name AND
fda.name_first = pfizer.first_name
WHERE pfizer.category LIKE 'Expert%';

Notice that where there is more than one table, both the table and the field
should be specified, separated by a period.

Take some time to understand the logic of the highlighted FROM clause,
which performs a JOIN linking the two tables, ON the fields specified.

This query should return the following results:

This tutorial will get you started with SQL and SQLite, but there is much
more to learn. Here is a reference for SQL, as understood by SQLite.

http://sqlite.org/lang.html

